» «

בינה אג'נטית

בינה אג'נטית
מה זה אג'נטיק AI?



בינה מלאכותית אג'נטית (Agentic Al) היא סוג של בינה מלאכותית שמשלבת את מודלי השפה, כמו ה-GPT, עם כלי פיתוח, ידע ופעולות שנועדו לאפשר בנייה של "סוכנים בינתיים" (AI agent) שיסייעו לנו במשימות שונות.

המושג הזה והכלים המיועדים עבור Agentic Al מכוונים בדרך כלל למתכנתים. אך לעולם של בניית סוכני AI הולכים ונכנסים, ללא כתיבת קוד, גם מי שאינם מתכנתים.

נזכיר שאותם סוכני AI שהאג'נטיק AI מאפשר הם כבר לא לאו דווקא מודלי שפה כלליים שעושים או יודעים לעשות הכל, כמו ה-LLMים הגדולים, אלא מנועים מתמחים, מתוכנתים עם יעדים ברורים ומכוונים לביצוע של משימות ספציפיות, עבור אנשים פרטיים או לארגונים ועסקים.

כי בניגוד למנועי השפה הגדולים (LLM) שהתמחו בהמלצות, עזרה וחשיבה, אבל בעיקר בטקסט, הסוכנים החכמים יכולים לעשות וממש עושים פעולות בעולם האמיתי ומהחיים עצמם - הם מתכנתים, בונים אתרים, משווקים, יוצרים תוכן, משרתים לקוחות, נותנים תמיכה ושירות, מעדכנים גיליון אלקטרוני, נותנים תמיכה טכנית, עונים לאימיילים, קונים מוצרים ועוד המון.


#שלוש תכונות בסיס יש לסוכני AI:

אוטונומיה - שמשמעותה פעילות ללא צורך מתמיד בהנחיה אנושית.

סתגלנות - יכולתם ללמוד מהאינטראקציות שלהם ולהגדיר מחדש את האלגוריתמים שלהם על סמך הידע שרכשו.

מכוונות למטרה - הם מתוכנתים להשגת יעדים ברורים, כמו נהיגה ברכב אוטונומי, טיפול במיילים שלנו, או תזמון פגישות.


#אג'נטיק AI בתעשיה
בחברות ענק מפתחים כל הזמן סוכנים חכמים שיכולים לבצע משימות, בפיקוח של מנהלים וראשי צוותים כמובן. אלה מערכות אוטונומיות ואג'נטיות, מבוססות בינה מלאכותית, המסוגלות לבצע משימות מורכבות, ממש כמו "מערכות המומחה", שמדענים חלמו עליהן בשנות ה-80 המאוחרות ומתגשמות עכשיו כסוכני בינה מלאכותית (AI Agents) שעובדים על סטרואידים.

אותם סוכנים, מבוססי בינה מלאכותית, ממש עובדים בשביל החברה וכבר בהתחלה משתמשים בכלים יומיומיים כמו Gmail, Salesforce, Office365, Google Sheets ועוד. הם מקבלים משימות מורכבות, מסוגלים לפרקן לתתי-משימות ולחלק את העבודה על ידי שיוך כל תת-משימה כזו לסוכן ה-AI המתאים ביותר לבצעה. כך ניתן לקבל את הפתרונות המתאימים ביותר גם למשימות מורכבות ביותר.


#עתיד מרובה סוכנים
השלב הבא הוא כמובן שלב החיבור של מספר סוכנים ועובדים חכמים שכאלה, לעבודה משותפת ומילוי משימות משותף. כי אחת היכולות המשמעותיות ביותר של סוכן AI היא לתקשר ולשתף פעולה עם מערכות AI אחרות, לצד תשתיות דיגיטליות. זה מה שמאפשר גישה משולבת ויעילה יותר, למשל לפתרון בעיות וניהול משימות בבית. זה נקרא בתעשייה "מערכות מרובות סוכנים" (Multi-Agent Systems).

דמיינו שרשרת של מכונות חכמות הפועלות כמו משרד אנושי, בו לכל עובד יש התמחות ותפקיד תואם. השלם בה הוא גדול מסכום חלקיו, קצת כמו הקובוטים (Cobots), עדרי הרובוטים המסונכרנים להפליא, שעובדים במחסני ומרכזי השילוח של Amazon.

מהחזון האג'נטי הזה קל לדמיין כיצד קם ז'אנר חדש ואולטרה מודרני של עסקים. אלה מפעלים תעשייתיים, וירטואליים לחלוטין, כמעט ללא בני אדם, או עם בני האדם המפקחים ומנהלים את הבינות, כשהם מייצרים בקבוצות קטנות את מה שבעבר חייב מאות או אלפי עובדים ויותר.

זה העתיד והוא מתחיל עכשיו. אג'נטיק AI מבטיח בפשטות שאם פעם השמיים היו הגבול, היום האופק הוא השמיים ואת הגבול לא ניתן לראות.


הנה הסבר על Agentic AI:

https://youtu.be/-pqzyvRp3Tc


אלה הם סוכני AI:

https://youtu.be/Fyo6vnM8BBk


כך יוצרים סוכן AI ב-Claude בתחילת 2025:

https://youtu.be/amCjKc9O_Bo


Windsurf האג'נטי הוא סוכן AI שמייצר קוד לתוכנות ואתרים:

https://youtu.be/pOvI02of5oo


הבשלת היכולות של סוכנים חכמים מבוססי AI היא תוצאה של התפתחות אדירה. הנה "Do Browser" שיודע לתת לנו שירות מופלא אונליין:

https://youtu.be/vMFWeCMrFNU


וזה החזון המבהיל או מבטיח - תאגיד של אחד או אחת:

https://youtu.be/6EGqLE0Y6Z0?long=yes
טוקנים
מהם טוקנים ב-AI ולמידת מכונה?



מאסימוני הטלפונים ועד עולם אבטחת מערכות מחשוב, טוקן (Token), בעברית “אסימון”, הוא מושג המשתנה בהתאם להקשר שבו הוא מוזכר. אפילו בתוך עולם המחשבים יש למושג טוקן כמה שימושים.

בלמידת מכונה, אחת הזירות המרתקות של העידן המודרני והתחום בו פועלים מודלי השפה הפופולריים של ימינו, כמו Claude או ChatGPT, לטוקנים יש משמעות אדירה.

אותם מודלים גדולים, LLMs, הם מודלים מתמטיים. כדי לבצע את המשימות שאנו מבקשים מהם, תוך כדי תקשורת איתם בשפה טבעית, כמו אנגלית, עברית וכדומה, הם משתמשים בתהליך שנקרא "טוקניזציה" (Tokenization).

במרכז הטוקניזציה נעשה פילוח של הטקסטים שהמודלים הללו מקבלים כנתונים, כדאטה, ליחידות קטנות יותר, תרגום של חלקי המידע הקטנים למספרים, כשאת יחידות המידע הללו, שהומרו למספרים, הם ינתחו בהמשך.

כך, אחרי שמסתיימת הטוקניזציה, הם מייצרים מהמידע טוקנים, מספרים שכל אחד מהם מייצג פריט מידע קטן. ה"טוקן" משמש בהם בתפקיד "אסימון למידת המכונה", שמתאר באופן מתמטי את יחידות הטקסט הקטנות. אלה מעין יחידות מידה שהמודלים המוכרים יוצרים מהקונטקסט.

לאחר שסיימו להפוך את המידע לטוקנים, מרבית המודלים שאנו מכירים הטוקנים משמשים לייצוג של הטקסט, ביחידות קטנות שהמודל מעבד בצורה מתמטית.

כשאנו משתמשים בטוקנים, זה כדי לסייע למודל להבין את המבנה של הטקסט, כך שיוכל לבצע על פיו את החישובים שלו. טוקן אחד יכול להיות כל חלק ממילה בשפה הרגילה שלנו, או אפילו תו אחד.

כדי להבין ולהגיב לקלט, המודל משתמש בכמות מסוימת של טוקנים. וטוקן יכול להיות כל פיסת מידע, מתו בודד ועד מילה שלמה ולעתים גם יותר. יש שיטות שונות של טוקניזציה והבחירה ביניהן היא בהתאם לאלגוריתם בו משתמשים. יש שהאסימון הוא לפי תווים (Character tokenization), אסימון לפי מילים, לפי משפט, ביטויים, טוקניזציה לפי מילת משנה ולפי מספר.

בשיחה על מודל AI (ה-LLM, כמו ChatGPT או Claude) משמש הטוקן לציון גודל השיחה על המודל והיקף המידע שיכול להיות בה. לכל מודל יש מגבלה של זיכרון התוכן שהוא יכול לעבד בשיחה אחת ולהתבסס עליו בתשובות שלו ובמהלך השיחה.

כל הטקסט שהמודל מכיל ובא מהקלט שמזרים לו המשתמש, כולל השאלות והתשובות וכל מידע נוסף, כל אלו מכונים "קונטקסט" (Context), כלומר "ההקשר".

חלון ההקשר (context window), או "חלון הקונטקסט", מייצג את כמות התוכן שהמודל יכול לעבד בשיחה עם משתמש. הכמות הזו נספרת בטוקנים. אם קלוד, למשל, תומך ב-200 אלף טוקנים, זה אומר שהשיחה יכולה לכלול כ-40 אלף מילים. אם לג'מיני של גוגל יש מיליון טוקנים, זה אומר פי 5 יותר מילים וגודל חלון הקונטקסט שלה, כלומר השיחות עם ג'מיני הוא של כ-2 ספרים ממוצעים.


טוקניזציה כפי שהיא נעשית בידי מדעני נתונים:

https://youtu.be/fNxaJsNG3-s


פרמטרים וטוקנים הם לא הכל במודלים:

https://youtu.be/a1nqXQMOCks


הסבר של Machine Learning Token באנגלית:

https://youtu.be/mnqXgojQCJI


וטוקניזציה באתרי אינטרנט שיכולה לשמש בהקשר אחר כאמצעי אבטחה:

https://youtu.be/Y7I4IDojhJk


אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

העולם הוא צבעוני ומופלא, אאוריקה כאן בשביל שתגלו אותו...

אלפי נושאים, תמונות וסרטונים, מפתיעים, מסקרנים וממוקדים.

ניתן לנווט בין הפריטים במגע, בעכבר, בגלגלת, או במקשי המקלדת

בואו לגלות, לחקור, ולקבל השראה!

אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

שלום,
נראה שכבר הכרתם את אאוריקה. בטח כבר גיליתם כאן דברים מדהימים, אולי כבר שאלתם שאלות וקיבלתם תשובות טובות.
נשמח לראות משהו מכם בספר האורחים שלנו: איזו מילה טובה, חוות דעת, עצה חכמה לשיפור או כל מה שיש לכם לספר לנו על אאוריקה, כפי שאתם חווים אותה.