» «

מה זה, רקורסיה

סדרת פיבונאצ'י
מהי סדרת פיבונאצ'י?



סדרת פיבונאצ'י במתמטיקה היא סדרת מספרים שהאיברים הראשונים בה הם 1 ו-1. כל איבר אחר בסדרת פיבונאצ'י שווה לסכום של שני האיברים הקודמים לו. 2 שווה ל-1 ועוד 1, 3 שווה 2+1, 5 הוא 2+3 וכן הלאה.

הסדרה קרויה על שם המתמטיקאי לאונרדו דה פיזה (לאונרדו מהעיר פיזה) שבאיטליה, שכונה "פיבונאצ'י". פיבונאצ'י תיאר את הסדרה הזו ב"ספר החשבוניה" שיצא בשנת 1202. הוא השתמש בסדרת פיבונאצ'י כדי לתאר את מספר הצאצאים של זוג ארנבים אחד. הוא תאר מצב שכל זוג ארנבים מגיל חודשיים ומעלה, ממליט מדי חודש זוג נוסף, התוצאות של מספר הצאצאים שלהם יהיו על פי הסדרה הזו.

מסתבר שהיחס בין שני איברים עוקבים של מספרי פיבונאצ'י שואף ל"יחס הזהב", קבוע מתמטי שתואר כבר ביוון העתיקה. תמיד כשמחלקים שני איברים עוקבים בסדרת פיבונאצ'י, התוצאה תלך ותתקרב לחתך הזהב. בדרך זו מוסברים דברים רבים בטבע בעזרת סדרת פיבונאצ'י והרקורסיה (ראו באאוריקה בתגית "מה זה, רקורסיה"), מקונכיות עם "ספירלת הזהב", דרך פרחים, כרובית, גלקסיות חלזוניות ועוד. וזה לא במקרה שסדרת פיבונאצ'י היא כה נפוצה בטבע - כמו שהראינו קודם בדוגמת הארנבים, מדובר בצורה היעילה ביותר לשכפול וכשצמחים ובעלי חיים פשוטים משכפלים תאים בגדילה - מקבלים בדיוק את הסדרה של פיבונאצ'י.

מקובל לסמן את איברי הסדרה באות F, שמוגדרת ברקורסיה - כלומר פעולה המבוצעת על ידי הפניה עצמית. במקרה הזה, כל F הוא סכום שני ה-Fים שלפניו.


הנה הסבר על סדרת פיבונאצ'י:

https://youtu.be/EAXKR-H_bS0


והנה הסבר מדעי של הסדרה הפיבונאצ'ית:

http://youtu.be/z5RWfXTd3QU


הדגמה של סדרת פיבונאצ'י:

http://youtu.be/H2aHh5FLX5w


הנה הסבר מתמטי של סדרת הפיבונאצ'י והדגמה של צורות בטבע שמציגות את הסדרה:

http://youtu.be/GoNldJAscqs
רקורסיה
מהי רקורסיה?



רקורסיה היא קצת מורכבת להסבר אבל מאד פשוטה להבנה. מגדירים אותה כמיקוד של בעיה כללית אל בעיה "קטנה" יותר, אך זהה לזו המקורית. כך גם הגדרה רקורסיבית היא הגדרה שחייבת לפנות לאותה הגדרה, אבל בתנאים שונים. ותמיד יהיה שם תנאי עצירה, כדי שהרקורסיה לא תהיה אינסופית..

הגדרה אחרת לרקורסיה היא "הגדרת בעיה במונחים של עצמה".

רוצים דוגמה:
"אם הבנת מהי רקורסיה, חזור אל הדף ממנו הגעת. אם לא – קרא בדף זה מהי רקורסיה".

הדוגמה הזו מסבירה בדיוק את הרקורסיה, כי תנאי העצירה הוא "אם הבנת.." ואם לא אז חוזרים לאותה דוגמה כדי ללמוד מהי רקורסיה מחדש ולבסוף מבינים שהרקורסיה היא מה שאתה מתבקש לעשות..

גם מתכנתים משתמשים ברקורסיה והם מתארים פונקציה רקורסיבית כ"פונקציה שקוראת לעצמה". נכון היה יותר לומר שפונקציה כזו קוראת לעותק של עצמה. לרוב נותנים לרקורסיה כזו את הדוגמה של חישוב n-עצרת במתמטיקה (=מכפלת 1 כפול 2 כפול 3… עד כפול n).

ואגב, הנה משפט משעשע ונכון: "כדי להגדיר רקורסיה, קודם-כל צריך להגדיר רקורסיה.."


הנה סרטון שמדגים איך רקורסיה עובדת כשעושים בעזרתה גרפיקה ממוחשבת:

http://youtu.be/ghZKKaZkzrE


הנה כניסה פנימה לפרקטל - צורה גרפית שנקראת "משולש סירפינסקי" שנבנתה בפונקציה רקורסיבית:

http://youtu.be/P5EkdJRtF-4


אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

העולם הוא צבעוני ומופלא, אאוריקה כאן בשביל שתגלו אותו...

אלפי נושאים, תמונות וסרטונים, מפתיעים, מסקרנים וממוקדים.

ניתן לנווט בין הפריטים במגע, בעכבר, בגלגלת, או במקשי המקלדת

בואו לגלות, לחקור, ולקבל השראה!

אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

שלום,
נראה שכבר הכרתם את אאוריקה. בטח כבר גיליתם כאן דברים מדהימים, אולי כבר שאלתם שאלות וקיבלתם תשובות טובות.
נשמח לראות משהו מכם בספר האורחים שלנו: איזו מילה טובה, חוות דעת, עצה חכמה לשיפור או כל מה שיש לכם לספר לנו על אאוריקה, כפי שאתם חווים אותה.