» «
רקורסיה
מהי רקורסיה?



רקורסיה היא קצת מורכבת להסבר אבל מאד פשוטה להבנה. מגדירים אותה כמיקוד של בעיה כללית אל בעיה "קטנה" יותר, אך זהה לזו המקורית. כך גם הגדרה רקורסיבית היא הגדרה שחייבת לפנות לאותה הגדרה, אבל בתנאים שונים. ותמיד יהיה שם תנאי עצירה, כדי שהרקורסיה לא תהיה אינסופית..

הגדרה אחרת לרקורסיה היא "הגדרת בעיה במונחים של עצמה".

רוצים דוגמה:
"אם הבנת מהי רקורסיה, חזור אל הדף ממנו הגעת. אם לא – קרא בדף זה מהי רקורסיה".

הדוגמה הזו מסבירה בדיוק את הרקורסיה, כי תנאי העצירה הוא "אם הבנת.." ואם לא אז חוזרים לאותה דוגמה כדי ללמוד מהי רקורסיה מחדש ולבסוף מבינים שהרקורסיה היא מה שאתה מתבקש לעשות..

גם מתכנתים משתמשים ברקורסיה והם מתארים פונקציה רקורסיבית כ"פונקציה שקוראת לעצמה". נכון היה יותר לומר שפונקציה כזו קוראת לעותק של עצמה. לרוב נותנים לרקורסיה כזו את הדוגמה של חישוב n-עצרת במתמטיקה (=מכפלת 1 כפול 2 כפול 3… עד כפול n).

ואגב, הנה משפט משעשע ונכון: "כדי להגדיר רקורסיה, קודם-כל צריך להגדיר רקורסיה.."


הנה סרטון שמדגים איך רקורסיה עובדת כשעושים בעזרתה גרפיקה ממוחשבת:

http://youtu.be/ghZKKaZkzrE


הנה כניסה פנימה לפרקטל - צורה גרפית שנקראת "משולש סירפינסקי" שנבנתה בפונקציה רקורסיבית:

http://youtu.be/P5EkdJRtF-4
מגדלי האנוי
מהם מגדלי האנוי?



מגדלי האנוי הם שם של חידה מפורסמת שהומצאה על ידי המתמטיקאי הצרפתי אדוארד לוקאס בשנת 1883. ב"מגדלי הנוי" נתון מגדל עם דיסקיות שהיקפן הולך ונעשה קטן ככל שהן עליונות (הרחבות למטה). מטרת החידה היא להעביר את כל המגדל בשלמותו לאחד משני העמודים הריקים שלידו. כמובן שיש להעביר את הדיסקיות במה שפחות צעדים וכמה שיותר מהר.

החידה משמשת ללימוד מתמטיקה ומדעי המחשב ולהמחשת מושגים כמו רקורסיה (ראו באאוריקה בתגית "רקורסיה"). עוד פרט מעניין - אם נסמן בנקודה כל מצב חוקי במשחק מגדלי האנוי, ונקשר בקווים את המצבים שבהם אפשר לעבור מאחד לשני, נקבל למול עינינו את גרף המשחק, בצורה של הפרקטל המוכר כ"משולש שרפינסקי".

אגב, לוקאס המציא גם אגדה שמדובר במקדש בראהמי שבו הכהנים מעבירים מגדל בן 64 דיסקיות. על פי האגדה שלו, כשיסיימו הכהנים את עבודתם, יגיע גם סוף העולם..


ישנם כללים להעברה:

א. בכל שלב תעבור רק דיסקית אחת מקום.

ב. אסור שיהיה מצב שדיסקית תהיה מונחת על דיסקית קטנה יותר.


הנה סרטון שמראה דרך לפתרון של חידת מגדלי האנוי:

http://youtu.be/BMkOBNZHcIs
פרקטל
מהם פרקטלים?



הפרקטל הוא צורה שככל שנביט בה קרוב יותר, נראה את אותה הצורה חוזרת על עצמה בכל קנה מידה. זוהי צורה גאומטרית שמורכבת פנימה, שוב ושוב, מעותקים של עצמה, מוקטנים יותר ויותר. ככל שנתבונן לתוך חלקי הפרקטל, נראה שם תמיד חלקים הדומים לו, כך שכל פרט זעיר בצורה, דומה לצורה המקורית והגדולה ביותר.

בגרפיקה ממוחשבת עושים המון שימוש בפרקטלים. הסיבה היא שנוסחאות מתמטיות קלות יחסית מאפשרות ליצור הרים ומרקמים מורכבים ליצירה בצורה אחרת. גם בפיזיקה משתמשים בפרקטלים למחקרים על תורת הכאוס וכדומה.

בטבע אפשר לראות מבנים שונים שדומים לפרקטלים. מבנים בטבע כמו צורת הכרובית, מבנה העורקים של העלה, התפצלות כלי הדם בגוף, פתית שלג או צורת קו חוף (במיוחד של הפיורדים בנורווגיה) - כל אלה מזכירים מאד את הפרקטלים ומראים שבטבע יש שיטה גם בדברים שאינם מובנים בצורה מתמטית.


הנה סרטון הסבר למושג הפרקטל:

http://youtu.be/Tm0U2VxFd8Q


הנה הסבר מילולי על הפרקטלים - מהתבניות היותר מעניינות שבטבע:

http://youtu.be/ofA2tBvcbhw?t=3m38s


הנה המתמטיקה של הפרקטלים בסרט מקסים (ומתורגם) לפי הז׳אנר של הסרט האפל:

https://youtu.be/0C75vRVL5lE


הפרקטלים שבטבע:

https://youtu.be/XwWyTts06tU


ועוד פרקטלים בטבע:

https://youtu.be/dZM45mfJQ40


ולהדגמת הרקורסיה הפשוטה, הנה משולש סרפינסקי שלא נגמר:

http://youtu.be/QsMvoui5WlQ?t=10s
משולש שרפינסקי
מהו משולש סירפינסקי?



משולש שרפינסקי, שנקרא גם ספוג שרפינסקי או משולש סירפינסקי, הוא אחד הפרקטלים המפורסמים. את ההיכרות עימו עשו המתמטיקאים בשנת 1915. המשולש קיבל את שמו מהמתמטיקאי הפולני שתיאר אותו לראשונה, ואצלב שרפינסקי.

משולש שרפינסקי הוא דוגמה מצוינת ופשוטה במיוחד לפרקטל, צורה שמורכבת מעותקים מוקטנים של עצמה, עד אינסוף. הוא בנוי משלושה עותקים שלו שהוקטנו בחצי שוב ושוב.


הנה משולש סרפינסקי שלא נגמר, להדגמת הרקורסיה הפשוטה:

http://youtu.be/QsMvoui5WlQ?t=10s


הנה סרט אפל מתורגם ומדהים על הפרקטלים ומשולש שרפינסקי בתוכם:

https://youtu.be/0C75vRVL5lE


והנה סרטון בגרפיקת מחשב של "משולש סירפינסקי" שנבנה ברקורסיה בתלת-מימד:

http://youtu.be/P5EkdJRtF-4


הנה משולש שרפינסקי מסוכריות של החג הנוצרי המעט מפחיד "ליל כל הקדושים":

http://youtu.be/z8ZWlUamNPI


סרטון שמראה איך יוצרים פרקטלים כמו משולש סרפינסקי:

http://youtu.be/XwWyTts06tU?t=1m22s

רקורסיה

סדרת פיבונאצ'י
מהי סדרת פיבונאצ'י?



סדרת פיבונאצ'י במתמטיקה היא סדרת מספרים שהאיברים הראשונים בה הם 1 ו-1. כל איבר אחר בסדרת פיבונאצ'י שווה לסכום של שני האיברים הקודמים לו. 2 שווה ל-1 ועוד 1, 3 שווה 2+1, 5 הוא 2+3 וכן הלאה.

הסדרה קרויה על שם המתמטיקאי לאונרדו דה פיזה (לאונרדו מהעיר פיזה) שבאיטליה, שכונה "פיבונאצ'י". פיבונאצ'י תיאר את הסדרה הזו ב"ספר החשבוניה" שיצא בשנת 1202. הוא השתמש בסדרת פיבונאצ'י כדי לתאר את מספר הצאצאים של זוג ארנבים אחד. הוא תאר מצב שכל זוג ארנבים מגיל חודשיים ומעלה, ממליט מדי חודש זוג נוסף, התוצאות של מספר הצאצאים שלהם יהיו על פי הסדרה הזו.

מסתבר שהיחס בין שני איברים עוקבים של מספרי פיבונאצ'י שואף ל"יחס הזהב", קבוע מתמטי שתואר כבר ביוון העתיקה. תמיד כשמחלקים שני איברים עוקבים בסדרת פיבונאצ'י, התוצאה תלך ותתקרב לחתך הזהב. בדרך זו מוסברים דברים רבים בטבע בעזרת סדרת פיבונאצ'י והרקורסיה (ראו באאוריקה בתגית "מה זה, רקורסיה"), מקונכיות עם "ספירלת הזהב", דרך פרחים, כרובית, גלקסיות חלזוניות ועוד. וזה לא במקרה שסדרת פיבונאצ'י היא כה נפוצה בטבע - כמו שהראינו קודם בדוגמת הארנבים, מדובר בצורה היעילה ביותר לשכפול וכשצמחים ובעלי חיים פשוטים משכפלים תאים בגדילה - מקבלים בדיוק את הסדרה של פיבונאצ'י.

מקובל לסמן את איברי הסדרה באות F, שמוגדרת ברקורסיה - כלומר פעולה המבוצעת על ידי הפניה עצמית. במקרה הזה, כל F הוא סכום שני ה-Fים שלפניו.


הנה הסבר על סדרת פיבונאצ'י:

https://youtu.be/EAXKR-H_bS0


והנה הסבר מדעי של הסדרה הפיבונאצ'ית:

http://youtu.be/z5RWfXTd3QU


הדגמה של סדרת פיבונאצ'י:

http://youtu.be/H2aHh5FLX5w


הנה הסבר מתמטי של סדרת הפיבונאצ'י והדגמה של צורות בטבע שמציגות את הסדרה:

http://youtu.be/GoNldJAscqs
מכונת פון נוימן
מהן מכונות פון ניומן?



מכונות פון-ניומן (Von Neumann Machines) הן מכונות המשכפלות את עצמן שוב ושוב, אבל הרעיון שהוליד את הרעיון ליצור מכונות כאלה, שעדיין לא יוצרו, הוא מעניין אפילו יותר מקיומן.

הכל התחיל מאחד המתמטיקאים-פיזיקאים הגדולים של המאה ה-20. קראו לו ג'ון פון-ניומן והוא היה כנראה אחד המבריקים בתולדות המתמטיקה. הוא עסק ופעל בכל כך הרבה תחומים מדעיים, תרם כל כך הרבה ידע למדע המודרני, שאלמלא אלברט איינשטיין הוא יכול היה להיחשב למדען הגדול במאה ה-20. הוא היה יהודי הונגרי שהתנצר וברח בתקופת המלחמה לארצות הברית, עסק במתמטיקה, ייסד את תחום תורת המשחקים, בחן סוגיות בפיזיקה, תרם לפצצה האטומית של אמריקה, המציא את המחשב המודרני ופתר אינסוף בעיות מדעיות מורכבות במיוחד.

כשהתחבטו הפיזיקאים בחיפוש אחר דרך להוציא בני אדם למסעות בחלל, הציע פון-ניומן פתרון משונה, מטורף, או גאוני - שכולם ראו בו הברקה בכל מקרה. במקום להוציא אנשים למסעות כאלה, הציע פון נוימן, הבה נאכלס את היקום במכונות. ואלה לא יהיו סתם מכונות, כמו שהיו אז, בטרם פרוץ המחשוב לחיינו. מדובר היה בחללית לא מאוישת, אינטליגנטית במיוחד, שתנחת על כוכב-לכת ותנצל את משאביו וחומרי הבנייה שבו. לאחר שתתפרק, תהפוך החללית החכמה לכמה רובוטים אינטליגנטיים, שינצלו את משאבי הכוכב כדי לבנות מהם עשרות חלליות נוספות כמוה. הללו יישלחו לכוכבים חדשים ויעשו שוב ושוב את פעילות ההתרבות המהירה וההשתלטות על כוכבים בגלקסיית שביל החלב. כמובן שהמכונות הללו יכינו גם את הכוכבים עצמם להתיישבות עתידית של מי ששלחו אותם.

המכונות האלה קיבלו את השם הלא-מפתיע "מכונות פון-ניומן". הרעיון שלו היה שתיאורטית יוכלו המכונות להשתלט כך על כל היקום, בעיקר משום שהן מתרבות בגידול אקספוננציאלי, מייצרות שוב ושוב מכונות כמוהן ומנצלות את המשאבים שיש בכוכבים עצמם, מבלי להוביל עימן משאבים מכדור הארץ. אם כל מכונה מייצרת 100 מכונות דומות, בתוך 4 דורות יוכלו מכונות פון נוימן לייצר מיליון מכונות. עוד שני דורות ויש כבר 10 מיליארד כאלה...

כמובן שמכונות פון-ניומן הן תיאורטיות. בניית מכונות כאלה היא עניין מורכב מאד, בהתחשב בכך שאנו רק בתחילת העידן של האינטליגנציה המלאכותית. אבל הרעיון הזה יושב על המדף המדעי-טכנולוגי וממתין למימושו. מי יודע מתי ירחפו ביליארדי מכונות כאלה בשביל החלב וישתלטו בשביל נינינו על הגלקסיה?


הנה סיפורן בעברית של מכונות פון ניומן:

https://youtu.be/Rpy9Qp7NAaw


הסבר מקיף על הרעיון של מכונות פון-ניומן:

https://youtu.be/4H55wybU3rI


וסרט תיעודי על הרעיון של מכונות המשכפלות את עצמן:

https://youtu.be/V-96C4ExhWM?long=yes


אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

העולם הוא צבעוני ומופלא, אאוריקה כאן בשביל שתגלו אותו...

אלפי נושאים, תמונות וסרטונים, מפתיעים, מסקרנים וממוקדים.

ניתן לנווט בין הפריטים במגע, בעכבר, בגלגלת, או במקשי המקלדת

בואו לגלות, לחקור, ולקבל השראה!

אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

שלום,
נראה שכבר הכרתם את אאוריקה. בטח כבר גיליתם כאן דברים מדהימים, אולי כבר שאלתם שאלות וקיבלתם תשובות טובות.
נשמח לראות משהו מכם בספר האורחים שלנו: איזו מילה טובה, חוות דעת, עצה חכמה לשיפור או כל מה שיש לכם לספר לנו על אאוריקה, כפי שאתם חווים אותה.