איך מאמנים מכונות לראות ולזהות פנים?
יותר ויותר מדברים כיום על "האח הגדול", שעוקב אחרי כל אחד מאיתנו ויודע עלינו יותר ויותר. אנשים מתפלאים כיצד הוא מזהה בכל רגע נתון את מקומנו, מי אנחנו בתמונות הפרטיות שלנו ובפוסטים החברתיים ואם אנחנו מתכננים פשע או מותר לנו לבצע עיסקה מסחרית.
אבל כיצד זה מתבצע?
הדרך לזהות אותנו בכל מקום היא ללמד מחשבים לעשות זאת. מדובר במה שנקרא טכנולוגיית זיהוי פנים. כל מחשב כזה מחובר למצלמות שמראות לו פנים והמחשב מזהה אותנו לעומת אחרים.
השיטה מתחילה בללמד תוכנה לזהות אנשים. מזינים אליה מאגר תמונות ענקי ו"מלמדים" אותה מהם פנים ומה לא. עושים זאת בסימון הטעויות שלה, מה שמשפר כל הזמן את יכולותיה. ככל שהמאגר הוא גדול וכוח המיחשוב רב, המכונה תלמד טוב יותר ומהר יותר לזהות פנים.
ככל שהמאגר מגוון, לעומת זאת, המכונה תלמד לזהות יותר סוגי פנים. בתחילת הדרך המאגרים לא היו מגוונים מספיק, מה שגרם לכך שיכולות המחשבים והבינה המלאכותית לזהות נשים, או בני מיעוטים שאינם לבנים, היו נמוכות מאוד.
ככל שהמכונה תלמד מהם פנים, ניתן יהיה להזין אליה את התמונות של כולנו וללמד אותה לזהות אנשים ספציפיים. אז לממשלות ולגופי ביטחון יש מאגרים כאלה, מתצלומי תעודות הזהות שלנו, אבל לגופים אחרים יש בעיה.
אז המצב הזה של ראיית מכונה (Machine vision) הולך ומשתפר דווקא תודות למאגרים העצומים של הרשתות החברתיות. כך תורמת למשל הטכנולוגיה שמאפשרת לדפי פייסבוק לזהות את הפרצופים בתמונות, גם לטובת זיהוי מגוון יותר וחכם יותר.
יותר ויותר מדברים כיום על "האח הגדול", שעוקב אחרי כל אחד מאיתנו ויודע עלינו יותר ויותר. אנשים מתפלאים כיצד הוא מזהה בכל רגע נתון את מקומנו, מי אנחנו בתמונות הפרטיות שלנו ובפוסטים החברתיים ואם אנחנו מתכננים פשע או מותר לנו לבצע עיסקה מסחרית.
אבל כיצד זה מתבצע?
הדרך לזהות אותנו בכל מקום היא ללמד מחשבים לעשות זאת. מדובר במה שנקרא טכנולוגיית זיהוי פנים. כל מחשב כזה מחובר למצלמות שמראות לו פנים והמחשב מזהה אותנו לעומת אחרים.
השיטה מתחילה בללמד תוכנה לזהות אנשים. מזינים אליה מאגר תמונות ענקי ו"מלמדים" אותה מהם פנים ומה לא. עושים זאת בסימון הטעויות שלה, מה שמשפר כל הזמן את יכולותיה. ככל שהמאגר הוא גדול וכוח המיחשוב רב, המכונה תלמד טוב יותר ומהר יותר לזהות פנים.
ככל שהמאגר מגוון, לעומת זאת, המכונה תלמד לזהות יותר סוגי פנים. בתחילת הדרך המאגרים לא היו מגוונים מספיק, מה שגרם לכך שיכולות המחשבים והבינה המלאכותית לזהות נשים, או בני מיעוטים שאינם לבנים, היו נמוכות מאוד.
ככל שהמכונה תלמד מהם פנים, ניתן יהיה להזין אליה את התמונות של כולנו וללמד אותה לזהות אנשים ספציפיים. אז לממשלות ולגופי ביטחון יש מאגרים כאלה, מתצלומי תעודות הזהות שלנו, אבל לגופים אחרים יש בעיה.
אז המצב הזה של ראיית מכונה (Machine vision) הולך ומשתפר דווקא תודות למאגרים העצומים של הרשתות החברתיות. כך תורמת למשל הטכנולוגיה שמאפשרת לדפי פייסבוק לזהות את הפרצופים בתמונות, גם לטובת זיהוי מגוון יותר וחכם יותר.